— — T —

I o A T 8 e B OB P

@)

A New Statistical Test Based on Linear
Complexity Profile (LCP)

M. Dakhil-Alian
Ph.D.

Department of Electrical and Computer Engi-

neening , Isfahan University of Technology
B b E)

B. Sadeghian
Assistant Professor
Department of Computer Engineering ,
Amirkabir University of Technology

Abstract

' Pscudo-random sequences are widely used in many applications such as
1 stream eiphers. To evaluate the randomness of sequences, statistical lests are
\ wsually applied. In this paper we explain the linear complexity behavior of bi-
L nary i.i.d random sequences, Linear complexity profile (LCP) of truly random
i sequence typically looks like an irregular staircase. Accordingly, we give a pro-
| babilistic model for height of stairs in the LCP. By using the model we present a
| new chi-square statistical test that is easily implemented and in comparison
y with standard statistical tests, has a good performance.
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Introduction

Stream cipher utilizes pseudo-random
sequences (running key sequences) to enci-
pher messages. The running key sequences
have pood statistical properties. In other
word, every section of the sequences looks
like as a sequence generated by Binary
Symmetric Source (BSS). A BSS is a
source that independently generates zero or
one with a same probability. According to
typical behavior of a random sequence, that
is generated by BSS or fair coin tossing,
Golomb  proposed  three requirements (o
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measure the randomness of o penodic bi-
nary sequence [l]. Every sequence which
satisfies the requirements s called pseudo-
random (PN) sequence.

Linear Feedback Shift Registers (LFSR)
with primitive polynomials can generate
PN sequences. Such sequence have good
statistical properties, but they are highly
predictable. To reduce this defect, the run-
ning key generators employ nonlineir trans-
formations. A useful measure unpredictabil-
ity is provided by associated  lincar
complexity. Thus running key sequence
must have high lineur complexity (neces-
sary condition). In fact the employment of

nonhinear transformations  increase  linear
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complexity and unpredictability, But high
linear complexity is not sufficient condi-
tion. For example linear complexity of the
following sequence with n bits is equal to n,
but it has no good statistical behavior to be
used in stream cipher systems,

§"=0,0,0,0,..001 (1

Moreover of high linear complexity, the
lincar complexity must irregularly increase
with respect to the length of sequence, In
theory, @ good random sequence should
have a linear complexity profile (LCF)
which follows closely, but irregularity the
n/2 line (where n is the number of sequence
bits) [2].

In practice, many different tests are car-
ricd on the sequences to evaluate i1s ran-
domness, The tests divide into two groups,
i.e., complexity tests and statistical tests.
Complexity tests evaluate how long of gen-
erated sequence is required to reconstruct
the whole sequence. The statistical tests
evaluate whether the sequences, generated
by running key generator, performs accord-
ing lo a sepecific probabilistic model. If it
does, it is evaluated as a good generator.
For thorough discussion of these models,
the interested reader is referred to [3] and
[4].

This paper is an attempt (o design a prac-
tical statistical test based on the idea of ir-
regularity of linear complexity profile. To
explain our test, we will present behavior of
lincar complexity of a sequence 5 =5;, §,,
... 8, of independent and identically dis-
tributed (1.i.d) binary random variables. Ac-
cordingly, we derive a specific probabilistic
maodel for the sequences and defline our new
test,
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2 - Linear Complexity of Binary
Random Sequences

For an i.i.d random sequence. it is im-
possible to predict one bit from all previous
bits. An approach to definition of random-
ness in these sequences is based on unpre-
dictability [3). In this approach, a finite se-
quence is described by the length of the
shortest Turing machine program that could
generate the sequence. In another approach,
instead of computational maodel such as
Turing rhachine, we use a LFSR model and
measure the unpredictability of a finite se-
quence by length of the shortest LESR that
is able to generate the sequence [6]. The
length of shortest LESR is referred to linear
complexity of the sequence. the LESR may
be found by Berlekamp-Massey algorithm
(7).

Let 8* =8, S,, ..., S, denote a sequence
of i.id binary random variables and let
A(S") be its linear complexity value. To
evaluate the linear complexity of a random
sequence, Berlekamp Massey algorithm can
be used to make LCP of the sequence. Fig.
| shows the LCP of a fair coin tossing se-
quence, which is derived by the algorithm,
The typical dynamic behavior of ii.d ran-
dom sequence also resembles this figure.
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Flg. (1) LCP af the falr coin tossing sequence .
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To express the behavior of ii.d binary

random sequences, the following theorem
were proved by R.A. Ruppel.
Theorem 1: The expected value and vari-
ance of the linear complexity of a sequence
8" =5, §, ..., 5, of n i.i.d binary random
viriables is given by [2]:

E.[,a,,{s“)]_—}lium,z'“{n,«lj (2)
2 18 .
and,
Var (A (8")) = B& . 2" t!i_ﬁ?{t.” n 4+ B2-2Rz(n)
| 27 Bl
g2 m? ydn 4 4y (3)

9 27 8l

Where R; (n) denotes the remainder
when nis divide by 2.

From viewpoint of this theorem we ex-
peet a typical random sequence to have as
sociated a typical linear complexity profile
closely the n/2 line. Moreover for large n,

the variance of several random sequences

such as 8" approach to 86/81.

There are sequences whose LCP are very
close to the n/2 line but they do not have
their desired statistical properties. For ex-
ample sequences such as § = =5, §,, 5,, ...
generated by Eq. (4) have perfect linear
complexity profile with wndesired statistical
properties [8].

sSp=1

S2=82 +5

The sequence 5" = 101600 100000001 ...
is one of these sequences whose LCP s
plotted in Fig. 2.

(4)
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Fig. (2) The LCP of 5" = 1010001000000 1...

Theroem2: Il S = =5,, §,, §;, ... denotes of
Lid binary random variables and if A(S") =
L, average number of sequence bits that
must be processed until the length change
occurs is given by [2]:

2 i Lsh
E (WA (S =1) = ? (5)

2+2L-n i L<
2

Moreover the average length change is:

f: it L=l
E[H/A (5 =L]= 2 (6)

l?.-:!LH*. if Lel

2

This theorem says that the LCP of an
i.i.d binary random sequence will resemble
to irregular staircase with average height
and length which agree to Eq. (5) and Eq.
In next section we derive a probabilistic
mode] for ideal LCP and present a new test
based on the model,

3- Probabilistic Model for LCP

Let §7 =8, 5, 8., ... dénote a sequence
of i.i.d binary random variables, From Eg.
(2), the expected value of linear complexity

(9
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of 87 isclese Lo the /2 line. On the other
. hand, the LCP of the sequence typically
looks like an irregular staircase. If H ™ =h,,
hy, hy ... denote the sequence of height
sigirs tn LCPof = then h, (=0, 1, 2, ...)
will be a random varable that statishics the
following conditional probability [Y]

P b= miho2 0) = 1" m=123 (1)
2

By using Eq. (7), we can find the expect-
ed vilue of non zero h as:

.

Efhhe )= % mP(h=mhe0)=2 (8)
o=l

To derive a probabilistic model for LCP

of random sequence, we will prove the fol-
lowing theorem:

Theorem 3: If 5~ =5, 5, 5., .. denote a
sequence of Li.d binary random variables,
then the probabilisitic model for the height
of the stairs in the LCP of 8 7 is:

3 if m=0
Pih=my=! 4
if m=1,23.

(9

szl

Froof:

Let H " =he b by e o be
the LCP height stairs seguence of § " =5,
881y S o Sir - The expected value
of lincar complexity of $™is

E[A [Smm]]=E[h|r+]'lj+...-]-hg.:+|]h+ S | -

(10
~oreguivalently,

EA ™" =EIAS™ E(hy + by + . + haem)

(1)

T

i ’ L
i R bl T P TS | e PO A L {1 kNP g T T AT PRUEN -._u.h“jm..
B T T

{where 5" =8, 5., 54 .., 5.00)
For large n and using Eq. (2), we obtain:

g, .
m N 44 '_‘Ftn_ll B SO | RN 4 L
2 14 2 £

(1)

Where €... t, , are equal o 27 (120 =;}

G | ;
and ? “; ‘J} respectively.

By using equation E(h} = E(h/h < )
p(hz0), we have:

P(he0y=La Hilm+n)-Ra(n)-Emm-En
4 3o
(13)

Thus for large m and n, we can write
p(h 2 0)=1/4 and therefore:

Pih=0y=3 L4
(h 14 (14)

On the other hand by using Eq. (7) and
(14), we complete the proof, i.e.

Pfh:m]:P{h:m!h#[}JF’{hvﬁf}}%

Pih=mh=0)P(h=0) m=1,23 .., (13)

and therefore,

Ph=mj=—l_ , m=123 .. (16)

-Jm

According to this theorem, if H' be the
LCP height stairs sequence of the §", then
we expect that about 3/4 of element of H'
equal to zero, /8 of them equal to one, I/
16 of them equal to two and so forth. Thus
a sequence has the desired behavior when
the statistics of stairs in it's LCP are close
o Eq. (9).

4-Goodness of Fit Test
Let ' =5,. 5 .. 5., ..., 5,, denole a se-
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quence of binary random variables with
identically probability function as:

Fisi=a,)=H =0 et -1, =0,1, . m- 1

(17)

To evaluate whether a sequence such as
5" conform with the probability function in
Eq. (17), we apply chi- square test. The test
parameter X* is defined as

s N
D) {—lr'.jaljh'h! (18)

[ =i

Where Nj denote the number of aj in the
s,

When n approaches to infinite values ,
the probability distribution function of %
will be independent of P, and in this case
we have [ 10]:

fias 1} fm-23) ¥
1 f—— e b o )
Pitsks| 2Ty 7 O
! rim-1y
2

W9

where (1) denotes the gamma function.

In chi-square test, we have a probabilis-
tic model such as Eq. (17) and a sample se-
quence which we want to evaluate the com-
patibility of it with the model. For
implement of the test we must determine
significant level (or confidence interval), In
the test, first the occurrence number of a,
(=0, 1, .., m-1) in the sequence is counted
(ie, N} and ¥ is computed by using Eq.
(18). If ¥ value is no grealer than the
threshold that is determined by significant
level and degree of freedom, the sequence
Is passed the test, This means that the se-
quence is compatible with the model. The
threshold value is extract from Chi-square
table with m-T degree of freedom. It is note
worthy that for implementation of the test,
the following relation should be satisfied

Amirkabic/™ol, 11/ Na, 42

(10}
Yiinpi>35 (20}

5 - The New Statistical Test

For a given sequence such as ", the se-
quence H" is found by Belekamp-Massey
algorithm. For large n, we expect that the
Statistical behavior of the HY, is approximat-
ed by Eq. (9). Since all of hi (i=0, 1, ... n-1)
have the same distribution, 1o evaluate
whether the H" is generated according to the
probability model presented in Eq. (9), we
can apply a Chi-square test. As in section 4,
for this purpose we can use Eq. (18) i.e.,

]
(Nhg- 34!1; i " (Nh; - —:";J-i

1= — - el 21
£ In = i':ﬂ-i (21)
4

Where Nh, (i=0, I, .. m) denote the
number of i in the H". : '

¥ in Eq. (21)has m degree of freedom.

For a specific significant level, We can
find the threshold from Chi-square 1able,
Thus for a given sequence, by using Eq.
(21) we compute ¥ value and compare it Lo
the threshold. If 7 is less than the threshaold,
the sequence is passed the test and ather-
wise is rejected. Since length of the se-
quence Is considered n bits, in practice, ac-
cording to Eq. (20), m should be:

I'Hffug:f%] {?EJ
Example: Let §* =8, 5., ... S, be the se-
quence that generated hy;

el _ay
S, = | n=21 F=O0%4

] Otherwise
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This sequence has a perfect linear com-
plexity profile but no good statistical be
havior, To perform the test atl lirst we must
findd Nhj in the M. For simplification sup-
pase n be equal to 2% Since the sequence
hins perfect LOP, then we have

-t ap
Wi 2 ir i=0. (24)

] (TN TR

By using Eq. (21), and (22), we obtain

p ST R e .
1i=12 ﬁ-ﬁ- + .%*3;‘]"1'-5 (25)

We consider, by %95 confidence inter-
val (%5 significant level), the y° is always
areater than the threshold, Therefore the se-
quence is rejected by the test, This resultis
desirable.

We applied our test to evaluate the se-
quences that were generated by pseudoran-
dom generators [11]. The results of apply-
ing this statistical test, on these sequences
show that our lest gives a measure to evalu-
ate the randomness of sequences, while the
measure can exclude patterned sequences
passed the LOCP st

Conclusions
In this paper we have presented a new
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